On convergence of random fixed point SP iterative scheme with errors using three random operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the convergence of three-step random iterative procesess with errors of nonself asymptotically nonexpansive random mappings

begin{abstract} In this paper, we prove some strong and weak convergence of three step random iterative scheme with errors to common random fixed points of three asymptotically nonexpansive nonself random mappings in a real uniformly convex separable Banach space. end{abstract}

متن کامل

on the convergence of three-step random iterative procesess with errors of nonself asymptotically nonexpansive random mappings

begin{abstract} in this paper, we prove some strong and weak convergence of three step random iterative scheme with errors to common random fixed points of three asymptotically nonexpansive nonself random mappings in a real uniformly convex separable banach space. end{abstract}

متن کامل

on the convergence of three-step random iterative procesess with errors of nonself asymptotically nonexpansive random mappings

begin{abstract} in this paper, we prove some strong and weak convergence of three step random iterative scheme with errors to common random fixed points of three asymptotically nonexpansive nonself random mappings in a real uniformly convex separable banach space. end{abstract}

متن کامل

On a Common Fixed Point of Two Random Operators Using Random Mann Iteration Scheme

In the present note, it is proved that if a random Mann iteration scheme defined by two operators is convergent under some contractive inequality the limit point is a common fixed point of each of two random operators in a Banach space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematical Forum

سال: 2014

ISSN: 1314-7536

DOI: 10.12988/imf.2014.312245